Author
Listed:
- Alessio Brini
- Ekaterina Seregina
Abstract
We propose Mixed-Panels-Transformer Encoder (MPTE), a novel framework for estimating factor models in panel datasets with mixed frequencies and nonlinear signals. Traditional factor models rely on linear signal extraction and require homogeneous sampling frequencies, limiting their applicability to modern high-dimensional datasets where variables are observed at different temporal resolutions. Our approach leverages Transformer-style attention mechanisms to enable context-aware signal construction through flexible, data-dependent weighting schemes that replace fixed linear combinations with adaptive reweighting based on similarity and relevance. We extend classical principal component analysis (PCA) to accommodate general temporal and cross-sectional attention matrices, allowing the model to learn how to aggregate information across frequencies without manual alignment or pre-specified weights. For linear activation functions, we establish consistency and asymptotic normality of factor and loading estimators, showing that our framework nests Target PCA as a special case while providing efficiency gains through transfer learning across auxiliary datasets. The nonlinear extension uses a Transformer architecture to capture complex hierarchical interactions while preserving the theoretical foundations. In simulations, MPTE demonstrates superior performance in nonlinear environments, and in an empirical application to 13 macroeconomic forecasting targets using a selected set of 48 monthly and quarterly series from the FRED-MD and FRED-QD databases, our method achieves competitive performance against established benchmarks. We further analyze attention patterns and systematically ablate model components to assess variable importance and temporal dependence. The resulting patterns highlight which indicators and horizons are most influential for forecasting.
Suggested Citation
Alessio Brini & Ekaterina Seregina, 2026.
"A Nonlinear Target-Factor Model with Attention Mechanism for Mixed-Frequency Data,"
Papers
2601.16274, arXiv.org.
Handle:
RePEc:arx:papers:2601.16274
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2601.16274. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.