IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2601.15304.html

An Explainable Market Integrity Monitoring System with Multi-Source Attention Signals and Transparent Scoring

Author

Listed:
  • Sandeep Neela

Abstract

Market integrity monitoring is difficult because suspicious price/volume behavior can arise from many benign mechanisms, while modern detection systems often rely on opaque models that are hard to audit and communicate. We present AIMM-X, an explainable monitoring pipeline that combines market microstructure-style signals derived from OHLCV time series with multi-source public attention signals (e.g., news and online discussion proxies) to surface time windows that merit analyst review. The system detects candidate anomalous windows using transparent thresholding and aggregation, then assigns an interpretable integrity score decomposed into a small set of additive components, allowing practitioners to trace why a window was flagged and which factors drove the score. We provide an end-to-end, reproducible implementation that downloads data, constructs attention features, builds unified panels, detects windows, computes component signals, and generates summary figures/tables. Our goal is not to label manipulation, but to provide a practical, auditable screening tool that supports downstream investigation by compliance teams, exchanges, or researchers.

Suggested Citation

  • Sandeep Neela, 2026. "An Explainable Market Integrity Monitoring System with Multi-Source Attention Signals and Transparent Scoring," Papers 2601.15304, arXiv.org.
  • Handle: RePEc:arx:papers:2601.15304
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2601.15304
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2601.15304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.