Author
Listed:
- Payel Sadhukhan
- Samrat Gupta
- Subhasis Ghosh
- Tanujit Chakraborty
Abstract
Healthcare sector indices consolidate the economic health of pharmaceutical, biotechnology, and healthcare service firms. The short-term movements in these indices are closely intertwined with capital allocation decisions affecting research and development investment, drug availability, and long-term health outcomes. This research investigates whether historical open-high-low-close (OHLC) index data contain sufficient information for predicting the directional movement of the opening index on the subsequent trading day. The problem is formulated as a supervised classification task involving a one-step-ahead rolling window. A diverse feature set is constructed, comprising original prices, volatility-based technical indicators, and a novel class of nowcasting features derived from mutual OHLC ratios. The framework is evaluated on data from healthcare indices in the U.S. and Indian markets over a five-year period spanning multiple economic phases, including the COVID-19 pandemic. The results demonstrate robust predictive performance, with accuracy exceeding 0.8 and Matthews correlation coefficients above 0.6. Notably, the proposed nowcasting features have emerged as a key determinant of the market movement. We have employed the Shapley-based explainability paradigm to further elucidate the contribution of the features: outcomes reveal the dominant role of the nowcasting features, followed by a more moderate contribution of original prices. This research offers a societal utility: the proposed features and model for short-term forecasting of healthcare indices can reduce information asymmetry and support a more stable and equitable health economy.
Suggested Citation
Payel Sadhukhan & Samrat Gupta & Subhasis Ghosh & Tanujit Chakraborty, 2026.
"Demystifying the trend of the healthcare index: Is historical price a key driver?,"
Papers
2601.14062, arXiv.org.
Handle:
RePEc:arx:papers:2601.14062
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2601.14062. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.