IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2601.13426.html

A uniformity principle for spatial matching

Author

Listed:
  • Taha Ameen
  • Flore Sentenac
  • Sophie H. Yu

Abstract

Platforms matching spatially distributed supply to demand face a fundamental design choice: given a fixed total budget of service range, how should it be allocated across supply nodes ex ante, i.e. before supply and demand locations are realized, to maximize fulfilled demand? We model this problem using bipartite random geometric graphs where $n$ supply and $m$ demand nodes are uniformly distributed on $[0,1]^k$ ($k \ge 1$), and edges form when demand falls within a supply node's service region, the volume of which is determined by its service range. Since each supply node serves at most one demand, platform performance is determined by the expected size of a maximum matching. We establish a uniformity principle: whenever one service range allocation is more uniform than the other, the more uniform allocation yields a larger expected matching. This principle emerges from diminishing marginal returns to range expanding service range, and limited interference between supply nodes due to bounded ranges naturally fragmenting the graph. For $k=1$, we further characterize the expected matching size through a Markov chain embedding and derive closed-form expressions for special cases. Our results provide theoretical guidance for optimizing service range allocation and designing incentive structures in ride-hailing, on-demand labor markets, and drone delivery networks.

Suggested Citation

  • Taha Ameen & Flore Sentenac & Sophie H. Yu, 2026. "A uniformity principle for spatial matching," Papers 2601.13426, arXiv.org.
  • Handle: RePEc:arx:papers:2601.13426
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2601.13426
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2601.13426. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.