Author
Listed:
- Eugene Lim
- Tzeh Yuan Neoh
- Nicholas Teh
Abstract
Envy-freeness up to any good (EFX) is a central fairness notion for allocating indivisible goods, yet its existence is unresolved in general. In the setting with few surplus items, where the number of goods exceeds the number of agents by a small constant (at most three), EFX allocations are guaranteed to exist, shifting the focus from existence to efficiency and computation. We study how EFX interacts with generalized-mean ($p$-mean) welfare, which subsumes commonly-studied utilitarian ($p=1$), Nash ($p=0$), and egalitarian ($p \rightarrow -\infty$) objectives. We establish sharp complexity dichotomies at $p=0$: for any fixed $p \in (0,1]$, both deciding whether EFX can attain the global $p$-mean optimum and computing an EFX allocation maximizing $p$-mean welfare are NP-hard, even with at most three surplus goods; in contrast, for any fixed $p \leq 0$, we give polynomial-time algorithms that optimize $p$-mean welfare within the space of EFX allocations and efficiently certify when EFX attains the global optimum. We further quantify the welfare loss of enforcing EFX via the price of fairness framework, showing that for $p > 0$, the loss can grow linearly with the number of agents, whereas for $p \leq 0$, it is bounded by a constant depending on the surplus (and for Nash welfare it vanishes asymptotically). Finally we show that requiring Pareto-optimality alongside EFX is NP-hard (and becomes $\Sigma_2^P$-complete for a stronger variant of EFX). Overall, our results delineate when EFX is computationally costly versus structurally aligned with welfare maximization in the setting with few surplus items.
Suggested Citation
Eugene Lim & Tzeh Yuan Neoh & Nicholas Teh, 2026.
"The Cost of EFX: Generalized-Mean Welfare and Complexity Dichotomies with Few Surplus Items,"
Papers
2601.12849, arXiv.org.
Handle:
RePEc:arx:papers:2601.12849
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2601.12849. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.