IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2601.12339.html

The Economics of Digital Intelligence Capital: Endogenous Depreciation and the Structural Jevons Paradox

Author

Listed:
  • Yukun Zhang
  • Tianyang Zhang

Abstract

This paper develops a micro-founded economic theory of the AI industry by modeling large language models as a distinct asset class-Digital Intelligence Capital-characterized by data-compute complementarities, increasing returns to scale, and relative (rather than absolute) valuation. We show that these features fundamentally reshape industry dynamics along three dimensions. First, because downstream demand depends on relative capability, innovation by one firm endogenously depreciates the economic value of rivals' existing capital, generating a persistent innovation pressure we term the Red Queen Effect. Second, falling inference prices induce downstream firms to adopt more compute-intensive agent architectures, rendering aggregate demand for compute super-elastic and producing a structural Jevons paradox. Third, learning from user feedback creates a data flywheel that can destabilize symmetric competition: when data accumulation outpaces data decay, the market bifurcates endogenously toward a winner-takes-all equilibrium. We further characterize conditions under which expanding upstream capabilities erode downstream application value (the Wrapper Trap). A calibrated agent-based model confirms these mechanisms and their quantitative implications. Together, the results provide a unified framework linking intelligence production upstream with agentic demand downstream, offering new insights into competition, scalability, and regulation in the AI economy.

Suggested Citation

  • Yukun Zhang & Tianyang Zhang, 2026. "The Economics of Digital Intelligence Capital: Endogenous Depreciation and the Structural Jevons Paradox," Papers 2601.12339, arXiv.org.
  • Handle: RePEc:arx:papers:2601.12339
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2601.12339
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2601.12339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.