Author
Abstract
Can fully agentic AI nowcast stock returns? We deploy a state-of-the-art Large Language Model to evaluate the attractiveness of each Russell 1000 stock daily, starting from April 2025 when AI web interfaces enabled real-time search. Our data contribution is unique along three dimensions. First, the nowcasting framework is completely out-of-sample and free of look-ahead bias by construction: predictions are collected at the current edge of time, ensuring the AI has no knowledge of future outcomes. Second, this temporal design is irreproducible -- once the information environment passes, it can never be recreated. Third, our framework is 100% agentic: we do not feed the model news, disclosures, or curated text; it autonomously searches the web, filters sources, and synthesises information into quantitative predictions. We find that AI possesses genuine stock selection ability, but only for identifying top winners. Longing the 20 highest-ranked stocks generates a daily Fama-French five-factor plus momentum alpha of 18.4 basis points and an annualised Sharpe ratio of 2.43. Critically, these returns derive from an implementable strategy trading highly liquid Russell 1000 constituents, with transaction costs representing less than 10\% of gross alpha. However, this predictability is highly concentrated: expanding beyond the top tier rapidly dilutes alpha, and bottom-ranked stocks exhibit returns statistically indistinguishable from the market. We hypothesise that this asymmetry reflects online information structure: genuinely positive news generates coherent signals, while negative news is contaminated by strategic corporate obfuscation and social media noise.
Suggested Citation
Zefeng Chen & Darcy Pu, 2026.
"Autonomous Market Intelligence: Agentic AI Nowcasting Predicts Stock Returns,"
Papers
2601.11958, arXiv.org.
Handle:
RePEc:arx:papers:2601.11958
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2601.11958. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.