Author
Abstract
The integration of thematic satellite allocations into core-satellite portfolio architectures is commonly approached using factor exposures, discretionary convictions, or backtested performance, with feasibility assessed primarily through liquidity screens or market-impact considerations. While such approaches may be appropriate at institutional scale, they are ill-suited to small portfolios and robustness-oriented allocation frameworks, where dominant constraints arise not from return predictability or trading capacity, but from fixed costs, irreversibility risk, and governance complexity. This paper develops a feasibility-first, non-predictive framework for satellite integration that is explicitly scale-aware. We formalize four nested feasibility layers (physical, economic, structural, and epistemic) that jointly determine whether a satellite allocation is admissible. Physical feasibility ensures implementability under concave market-impact laws; economic feasibility suppresses noise-dominated reallocations via cost-dominance threshold constraints; structural feasibility bounds satellite size through an explicit optionality budget defined by tolerable loss under thesis failure; and epistemic feasibility limits satellite breadth and dispersion through an entropy-based complexity budget. Within this hierarchy, structural optionality is identified as the primary design principle for thematic satellites, with the remaining layers acting as robustness lenses rather than optimization criteria. The framework yields closed-form feasibility bounds on satellite size, turnover, and breadth without reliance on return forecasts, factor premia, or backtested performance, providing a disciplined basis for integrating thematic satellites into small, robustness-oriented portfolios.
Suggested Citation
Roberto Garrone, 2026.
"Feasibility-First Satellite Integration in Robust Portfolio Architectures,"
Papers
2601.08721, arXiv.org.
Handle:
RePEc:arx:papers:2601.08721
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2601.08721. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.