IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2601.08247.html

Incorporating Cognitive Biases into Reinforcement Learning for Financial Decision-Making

Author

Listed:
  • Liu He

Abstract

Financial markets are influenced by human behavior that deviates from rationality due to cognitive biases. Traditional reinforcement learning (RL) models for financial decision-making assume rational agents, potentially overlooking the impact of psychological factors. This study integrates cognitive biases into RL frameworks for financial trading, hypothesizing that such models can exhibit human-like trading behavior and achieve better risk-adjusted returns than standard RL agents. We introduce biases, such as overconfidence and loss aversion, into reward structures and decision-making processes and evaluate their performance in simulated and real-world trading environments. Despite its inconclusive or negative results, this study provides insights into the challenges of incorporating human-like biases into RL, offering valuable lessons for developing robust financial AI systems.

Suggested Citation

  • Liu He, 2026. "Incorporating Cognitive Biases into Reinforcement Learning for Financial Decision-Making," Papers 2601.08247, arXiv.org.
  • Handle: RePEc:arx:papers:2601.08247
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2601.08247
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2601.08247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.