IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2601.07942.html

Enhancing Portfolio Optimization with Deep Learning Insights

Author

Listed:
  • Brandon Luo
  • Jim Skufca

Abstract

Our work focuses on deep learning (DL) portfolio optimization, tackling challenges in long-only, multi-asset strategies across market cycles. We propose training models with limited regime data using pre-training techniques and leveraging transformer architectures for state variable inclusion. Evaluating our approach against traditional methods shows promising results, demonstrating our models' resilience in volatile markets. These findings emphasize the evolving landscape of DL-driven portfolio optimization, stressing the need for adaptive strategies to navigate dynamic market conditions and improve predictive accuracy.

Suggested Citation

  • Brandon Luo & Jim Skufca, 2026. "Enhancing Portfolio Optimization with Deep Learning Insights," Papers 2601.07942, arXiv.org.
  • Handle: RePEc:arx:papers:2601.07942
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2601.07942
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2601.07942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.