IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2601.07792.html

Non-Convex Portfolio Optimization via Energy-Based Models: A Comparative Analysis Using the Thermodynamic HypergRaphical Model Library (THRML) for Index Tracking

Author

Listed:
  • Javier Mancilla
  • Theodoros D. Bouloumis
  • Frederic Goguikian

Abstract

Portfolio optimization under cardinality constraints transforms the classical Markowitz mean-variance problem from a convex quadratic problem into an NP-hard combinatorial optimization problem. This paper introduces a novel approach using THRML (Thermodynamic HypergRaphical Model Library), a JAX-based library for building and sampling probabilistic graphical models that reformulates index tracking as probabilistic inference on an Ising Hamiltonian. Unlike traditional methods that seek a single optimal solution, THRML samples from the Boltzmann distribution of high-quality portfolios using GPU-accelerated block Gibbs sampling, providing natural regularization against overfitting. We implement three key innovations: (1) dynamic coupling strength that scales inversely with market volatility (VIX), adapting diversification pressure to market regimes; (2) rebalanced bias weights prioritizing tracking quality over momentum for index replication; and (3) sector-aware post-processing ensuring institutional-grade diversification. Backtesting on a 100-stock S and P 500 universe from 2023 to 2025 demonstrates that THRML achieves 4.31 percent annualized tracking error versus 5.66 to 6.30 percent for baselines, while simultaneously generating 128.63 percent total return against the index total return of 79.61 percent. The Diebold-Mariano test confirms statistical significance with p less than 0.0001 across all comparisons. These results position energy-based models as a promising paradigm for portfolio construction, bridging statistical mechanics and quantitative finance.

Suggested Citation

  • Javier Mancilla & Theodoros D. Bouloumis & Frederic Goguikian, 2026. "Non-Convex Portfolio Optimization via Energy-Based Models: A Comparative Analysis Using the Thermodynamic HypergRaphical Model Library (THRML) for Index Tracking," Papers 2601.07792, arXiv.org.
  • Handle: RePEc:arx:papers:2601.07792
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2601.07792
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2601.07792. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.