Author
Listed:
- Efstratios Manolakis
- Christian Bongiorno
- Rosario Nunzio Mantegna
Abstract
A new wave of work on covariance cleaning and nonlinear shrinkage has delivered asymptotically optimal analytical solutions for large covariance matrices. The same framework has been generalized to empirical cross-covariance matrices, whose singular value decomposition identifies canonical comovement modes between two asset sets, with singular values quantifying the strength of each mode and providing natural targets for shrinkage. Existing analytical cross-covariance cleaners are derived under strong stationarity and large-sample assumptions, and they typically rely on mesoscopic regularity conditions such as bounded spectra; macroscopic common modes (e.g., a global market factor) violate these conditions. When applied to real equity returns, where dependence structures drift over time and global modes are prominent, we find that these theoretically optimal formulas do not translate into robust out-of-sample performance. We address this gap by designing a random-matrix-inspired neural architecture that operates in the empirical singular-vector basis and learns a nonlinear mapping from empirical singular values to their corresponding cleaned values. By construction, the network can recover the analytical solution as a special case, yet it remains flexible enough to adapt to non-stationary dynamics and mode-driven distortions. Trained on a long history of equity returns, the proposed method achieves a more favorable bias-variance trade-off than purely analytical cleaners and delivers systematically lower out-of-sample cross-covariance prediction errors. Our results demonstrate that combining random-matrix theory with machine learning makes asymptotic theories practically effective in realistic time-varying markets.
Suggested Citation
Efstratios Manolakis & Christian Bongiorno & Rosario Nunzio Mantegna, 2026.
"Physics-Informed Singular-Value Learning for Cross-Covariances Forecasting in Financial Markets,"
Papers
2601.07687, arXiv.org, revised Jan 2026.
Handle:
RePEc:arx:papers:2601.07687
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2601.07687. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.