IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2601.07283.html

Condorcet's Paradox as Non-Orientability

Author

Listed:
  • Ori Livson
  • Siddharth Pritam
  • Mikhail Prokopenko

Abstract

Preference cycles are prevalent in problems of decision-making, and are contradictory when preferences are assumed to be transitive. This contradiction underlies Condorcet's Paradox, a pioneering result of Social Choice Theory, wherein intuitive and seemingly desirable constraints on decision-making necessarily lead to contradictory preference cycles. Topological methods have since broadened Social Choice Theory and elucidated existing results. However, characterisations of preference cycles in Topological Social Choice Theory are lacking. In this paper, we address this gap by introducing a framework for topologically modelling preference cycles that generalises Baryshnikov's existing topological model of strict, ordinal preferences on 3 alternatives. In our framework, the contradiction underlying Condorcet's Paradox topologically corresponds to the non-orientability of a surface homeomorphic to either the Klein Bottle or Real Projective Plane, depending on how preference cycles are represented. These findings allow us to reduce Arrow's Impossibility Theorem to a statement about the orientability of a surface. Furthermore, these results contribute to existing wide-ranging interest in the relationship between non-orientability, impossibility phenomena in Economics, and logical paradoxes more broadly.

Suggested Citation

  • Ori Livson & Siddharth Pritam & Mikhail Prokopenko, 2026. "Condorcet's Paradox as Non-Orientability," Papers 2601.07283, arXiv.org.
  • Handle: RePEc:arx:papers:2601.07283
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2601.07283
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2601.07283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.