IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2601.06547.html

Sign Accuracy, Mean-Squared Error and the Rate of Zero Crossings: a Generalized Forecast Approach

Author

Listed:
  • Marc Wildi

Abstract

Forecasting entails a complex estimation challenge, as it requires balancing multiple, often conflicting, priorities and objectives. Traditional forecast optimization criteria typically focus on a single metric -- such as minimizing the mean squared error (MSE) -- which may overlook other important aspects of predictive performance. In response, we introduce a novel approach called the Smooth Sign Accuracy (SSA) framework, which simultaneously considers sign accuracy, MSE, and the frequency of sign changes in the predictor. This addresses a fundamental trade-off (the so-called accuracy-smoothness (AS) dilemma) in prediction. The SSA criterion thus enables the integration of various design objectives related to AS forecasting performance, effectively generalizing conventional MSE-based metrics. We further extend this methodology to accommodate non-stationary, integrated processes, with particular emphasis on controlling the predictor's monotonicity. Moreover, we demonstrate the broad applicability of our approach through an application to, and customization of, established business cycle analysis tools, highlighting its versatility across diverse forecasting contexts.

Suggested Citation

  • Marc Wildi, 2026. "Sign Accuracy, Mean-Squared Error and the Rate of Zero Crossings: a Generalized Forecast Approach," Papers 2601.06547, arXiv.org.
  • Handle: RePEc:arx:papers:2601.06547
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2601.06547
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2601.06547. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.