IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2601.05965.html

Game connectivity and adaptive dynamics in many-action games

Author

Listed:
  • Tom Johnston
  • Michael Savery
  • Alex Scott
  • Bassel Tarbush

Abstract

We study the typical structure of games in terms of their connectivity properties. A game is said to be `connected' if it has a pure Nash equilibrium and the property that there is a best-response path from every action profile which is not a pure Nash equilibrium to every pure Nash equilibrium, and it is generic if it has no indifferences. In previous work we showed that, among all $n$-player $k$-action generic games that admit a pure Nash equilibrium, the fraction that are connected tends to $1$ as $n$ gets sufficiently large relative to $k$. The present paper considers the large-$k$ regime, which behaves differently: we show that the connected fraction tends to $1-\zeta_n$ as $k$ gets large, where $\zeta_n>0$. In other words, a constant fraction of many-action games are not connected. However, $\zeta_n$ is small and tends to $0$ rapidly with $n$, so as $n$ increases all but a vanishingly small fraction of many-player-many-action games are connected. Since connectedness is conducive to equilibrium convergence we obtain, by implication, that there is a simple adaptive dynamic that is guaranteed to lead to a pure Nash equilibrium in all but a vanishingly small fraction of generic games that have one. Our results are based on new probabilistic and combinatorial arguments which allow us to address the large-$k$ regime that the approach used in our previous work could not tackle. We thus complement our previous work to provide a more complete picture of game connectivity across different regimes.

Suggested Citation

  • Tom Johnston & Michael Savery & Alex Scott & Bassel Tarbush, 2026. "Game connectivity and adaptive dynamics in many-action games," Papers 2601.05965, arXiv.org.
  • Handle: RePEc:arx:papers:2601.05965
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2601.05965
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2601.05965. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.