IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2601.05716.html

When the Rules Change: Adaptive Signal Extraction via Kalman Filtering and Markov-Switching Regimes

Author

Listed:
  • Sungwoo Kang

Abstract

Static linear models of order flow assume constant parameters, failing precisely when they are needed most: during periods of market stress and structural change. This paper proposes a dynamic, state-dependent framework for order flow signal extraction that adapts to shifting market conditions in the Korean stock market. Using daily transaction data from 2020--2024 covering 2,439 stocks and 2.79 million stock-day observations, we implement three complementary methodologies: (1) an Adaptive Kalman Filter where measurement noise variance is explicitly coupled to market volatility; (2) a three-state Markov-Switching model identifying Bull, Normal, and Crisis regimes; and (3) an Asymmetric Response Function capturing differential investor reactions to positive versus negative shocks. We find that foreign investor predictive power increases 8.9-fold during crisis periods relative to bull markets ($\beta_{crisis}=0.00204$ vs. $\beta_{bull}=0.00023$), while individual investors exhibit momentum-chasing behavior with 6.3 times stronger response to positive shocks. The integrated ``All-Weather'' strategy provides modest drawdown reduction during extreme market events, though challenges remain in the post-COVID high-rate environment.

Suggested Citation

  • Sungwoo Kang, 2026. "When the Rules Change: Adaptive Signal Extraction via Kalman Filtering and Markov-Switching Regimes," Papers 2601.05716, arXiv.org.
  • Handle: RePEc:arx:papers:2601.05716
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2601.05716
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2601.05716. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.