Author
Listed:
- Runze Li
- Rui Zhou
- David Pitt
Abstract
High-frequency death counts are now widely available and contain timely information about intra-year mortality dynamics, but most stochastic mortality models are still estimated on annual data and therefore update only when annual totals are released. We propose a mixed-frequency state-space (MF--SS) extension of the Lee--Carter framework that jointly uses annual mortality rates and monthly death counts. The two series are linked through a shared latent monthly mortality factor, with the annual period factor defined as the intra-year average of the monthly factors. The latent monthly factor follows a seasonal ARIMA process, and parameters are estimated by maximum likelihood using an EM algorithm with Kalman filtering and smoothing. This setup enables real-time intra-year updates of the latent state and forecasts as new monthly observations arrive without re-estimating model parameters. Using U.S. data for ages 20--90 over 1999--2019, we evaluate intra-year annual nowcasts and one- to five-year-ahead forecasts. The MF--SS model produces both a direct annual forecast and an annual forecast implied by aggregating monthly projections. In our application, the aggregated monthly forecast is typically more accurate. Incorporating monthly information substantially improves intra-year annual nowcasts, especially after the first few months of the year. As a benchmark, we also fit separate annual and monthly Lee--Carter models and combine their forecasts using temporal reconciliation. Reconciliation improves these independent forecasts but adds little to MF--SS forecasts, consistent with MF--SS pooling information across frequencies during estimation. The MF--SS aggregated monthly forecasts generally outperform both unreconciled and temporally reconciled Lee--Carter forecasts and produce more cautious predictive intervals than the reconciled Lee--Carter approach.
Suggested Citation
Runze Li & Rui Zhou & David Pitt, 2026.
"Dynamic Mortality Forecasting via Mixed-Frequency State-Space Models,"
Papers
2601.05702, arXiv.org.
Handle:
RePEc:arx:papers:2601.05702
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2601.05702. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.