IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2601.05374.html

From Unstructured Data to Demand Counterfactuals: Theory and Practice

Author

Listed:
  • Timothy Christensen
  • Giovanni Compiani

Abstract

Empirical models of demand for differentiated products rely on low-dimensional product representations to capture substitution patterns. These representations are increasingly proxied by applying ML methods to high-dimensional, unstructured data, including product descriptions and images. When proxies fail to capture the true dimensions of differentiation that drive substitution, standard workflows will deliver biased counterfactuals and invalid inference. We develop a practical toolkit that corrects this bias and ensures valid inference for a broad class of counterfactuals. Our approach applies to market-level and/or individual data, requires minimal additional computation, is efficient, delivers simple formulas for standard errors, and accommodates data-dependent proxies, including embeddings from fine-tuned ML models. It can also be used with standard quantitative attributes when mismeasurement is a concern. In addition, we propose diagnostics to assess the adequacy of the proxy construction and dimension. The approach yields meaningful improvements in predicting counterfactual substitution in both simulations and an empirical application.

Suggested Citation

  • Timothy Christensen & Giovanni Compiani, 2026. "From Unstructured Data to Demand Counterfactuals: Theory and Practice," Papers 2601.05374, arXiv.org.
  • Handle: RePEc:arx:papers:2601.05374
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2601.05374
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2601.05374. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.