IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2601.05290.html

Multi-Period Martingale Optimal Transport: Classical Theory, Neural Acceleration, and Financial Applications

Author

Listed:
  • Sri Sairam Gautam B

Abstract

This paper develops a computational framework for Multi-Period Martingale Optimal Transport (MMOT), addressing convergence rates, algorithmic efficiency, and financial calibration. Our contributions include: (1) Theoretical analysis: We establish discrete convergence rates of $O(\sqrt{\Delta t} \log(1/\Delta t))$ via Donsker's principle and linear algorithmic convergence of $(1-\kappa)^{2/3}$; (2) Algorithmic improvements: We introduce incremental updates ($O(M^2)$ complexity) and adaptive sparse grids; (3) Numerical implementation: A hybrid neural-projection solver is proposed, combining transformer-based warm-starting with Newton-Raphson projection. Once trained, the pure neural solver achieves a $1{,}597\times$ online inference speedup ($4.7$s $\to 2.9$ms) suitable for real-time applications, while the hybrid solver ensures martingale constraints to $10^{-6}$ precision. Validated on 12,000 synthetic instances (GBM, Merton, Heston) and 120 real market scenarios.

Suggested Citation

  • Sri Sairam Gautam B, 2026. "Multi-Period Martingale Optimal Transport: Classical Theory, Neural Acceleration, and Financial Applications," Papers 2601.05290, arXiv.org.
  • Handle: RePEc:arx:papers:2601.05290
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2601.05290
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2601.05290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.