IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2601.05227.html

Stochastic Deep Learning: A Probabilistic Framework for Modeling Uncertainty in Structured Temporal Data

Author

Listed:
  • James Rice

Abstract

I propose a novel framework that integrates stochastic differential equations (SDEs) with deep generative models to improve uncertainty quantification in machine learning applications involving structured and temporal data. This approach, termed Stochastic Latent Differential Inference (SLDI), embeds an It\^o SDE in the latent space of a variational autoencoder, allowing for flexible, continuous-time modeling of uncertainty while preserving a principled mathematical foundation. The drift and diffusion terms of the SDE are parameterized by neural networks, enabling data-driven inference and generalizing classical time series models to handle irregular sampling and complex dynamic structure. A central theoretical contribution is the co-parameterization of the adjoint state with a dedicated neural network, forming a coupled forward-backward system that captures not only latent evolution but also gradient dynamics. I introduce a pathwise-regularized adjoint loss and analyze variance-reduced gradient flows through the lens of stochastic calculus, offering new tools for improving training stability in deep latent SDEs. My paper unifies and extends variational inference, continuous-time generative modeling, and control-theoretic optimization, providing a rigorous foundation for future developments in stochastic probabilistic machine learning.

Suggested Citation

  • James Rice, 2026. "Stochastic Deep Learning: A Probabilistic Framework for Modeling Uncertainty in Structured Temporal Data," Papers 2601.05227, arXiv.org.
  • Handle: RePEc:arx:papers:2601.05227
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2601.05227
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2601.05227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.