IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2601.04223.html

Beyond Interaction Effects: Two Logics for Studying Population Inequalities

Author

Listed:
  • Adel Daoud

Abstract

When sociologists and other social scientist ask whether the return to college differs by race and gender, they face a choice between two fundamentally different modes of inquiry. Traditional interaction models follow deductive logic: the researcher specifies which variables moderate effects and tests these hypotheses. Machine learning methods follow inductive logic: algorithms search across vast combinatorial spaces to discover patterns of heterogeneity. This article develops a framework for navigating between these approaches. We show that the choice between deduction and induction reflects a tradeoff between interpretability and flexibility, and we demonstrate through simulation when each approach excels. Our framework is particularly relevant for inequality research, where understanding how treatment effects vary across intersecting social subpopulation is substantively central.

Suggested Citation

  • Adel Daoud, 2025. "Beyond Interaction Effects: Two Logics for Studying Population Inequalities," Papers 2601.04223, arXiv.org.
  • Handle: RePEc:arx:papers:2601.04223
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2601.04223
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2601.04223. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.