IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2601.04220.html

Constrained Assortment and Price Optimization under Generalized Nested Logit Models

Author

Listed:
  • Hoang Giang Pham
  • Tien Mai

Abstract

We study assortment and price optimization under the generalized nested logit (GNL) model, one of the most general and flexible modeling frameworks in discrete choice modeling. Despite its modeling advantages, optimization under GNL is highly challenging: even the pure assortment problem is NP-hard, and existing approaches rely on approximation schemes or are limited to simple cardinality constraints. In this paper, we develop the first exact and near-exact algorithms for constrained assortment and joint assortment--pricing optimization (JAP) under GNL. Our approach reformulates the problem into bilinear and exponential-cone convex programs and exploits convexity, concavity, and submodularity properties to generate strong cutting planes within a Branch-and-Cut framework (B\&C). We further extend this framework to the mixed GNL (MGNL) model, capturing heterogeneous customer segments, and to JAP with discrete prices. For the continuous pricing case, we propose a near-exact algorithm based on piecewise-linear approximation (PWLA) that achieves arbitrarily high precision under general linear constraints. Extensive computational experiments demonstrate that our methods substantially outperform state-of-the-art approximation approaches in both solution quality and scalability. In particular, we are able to solve large-scale instances with up to 1000 products and 20 nests, and to obtain near-optimal solutions for continuous pricing problems with negligible optimality gaps. To the best of our knowledge, this work resolves several open problems in assortment and price optimization under GNL.

Suggested Citation

  • Hoang Giang Pham & Tien Mai, 2025. "Constrained Assortment and Price Optimization under Generalized Nested Logit Models," Papers 2601.04220, arXiv.org.
  • Handle: RePEc:arx:papers:2601.04220
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2601.04220
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2601.04220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.