IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2601.04087.html
   My bibliography  Save this paper

Mean Square Errors of factors extracted using principal components, linear projections, and Kalman filter

Author

Listed:
  • Matteo Barigozzi
  • Diego Fresoli
  • Esther Ruiz

Abstract

Factor extraction from systems of variables with a large cross-sectional dimension, $N$, is often based on either Principal Components (PC)-based procedures, or Kalman filter (KF)-based procedures. Measuring the uncertainty of the extracted factors is important when, for example, they have a direct interpretation and/or they are used to summarized the information in a large number of potential predictors. In this paper, we compare the finite $N$ mean square errors (MSEs) of PC and KF factors extracted under different structures of the idiosyncratic cross-correlations. We show that the MSEs of PC-based factors, implicitly based on treating the true underlying factors as deterministic, are larger than the corresponding MSEs of KF factors, obtained by treating the true factors as either serially independent or autocorrelated random variables. We also study and compare the MSEs of PC and KF factors estimated when the idiosyncratic components are wrongly considered as if they were cross-sectionally homoscedastic and/or uncorrelated. The relevance of the results for the construction of confidence intervals for the factors are illustrated with simulated data.

Suggested Citation

  • Matteo Barigozzi & Diego Fresoli & Esther Ruiz, 2026. "Mean Square Errors of factors extracted using principal components, linear projections, and Kalman filter," Papers 2601.04087, arXiv.org.
  • Handle: RePEc:arx:papers:2601.04087
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2601.04087
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2601.04087. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.