Author
Abstract
In Bayesian single-item auctions, a monotone bidding strategy--one that prescribes a higher bid for a higher value type--can be equivalently represented as a partition of the quantile space into consecutive intervals corresponding to increasing bids. Kumar et al. (2024) prove that agile online gradient descent (OGD), when used to update a monotone bidding strategy through its quantile representation, is strategically robust in repeated first-price auctions: when all bidders employ agile OGD in this way, the auctioneer's average revenue per round is at most the revenue of Myerson's optimal auction, regardless of how she adjusts the reserve price over time. In this work, we show that this strategic robustness guarantee is not unique to agile OGD or to the first-price auction: any no-regret learning algorithm, when fed gradient feedback with respect to the quantile representation, is strategically robust, even if the auction format changes every round, provided the format satisfies allocation monotonicity and voluntary participation. In particular, the multiplicative weights update (MWU) algorithm simultaneously achieves the optimal regret guarantee and the best-known strategic robustness guarantee. At a technical level, our results are established via a simple relation that bridges Myerson's auction theory and standard no-regret learning theory. This showcases the potential of translating standard regret guarantees into strategic robustness guarantees for specific games, without explicitly minimizing any form of swap regret.
Suggested Citation
Junyao Zhao, 2026.
"From No-Regret to Strategically Robust Learning in Repeated Auctions,"
Papers
2601.03853, arXiv.org.
Handle:
RePEc:arx:papers:2601.03853
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2601.03853. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.