IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2601.02677.html

Uni-FinLLM: A Unified Multimodal Large Language Model with Modular Task Heads for Micro-Level Stock Prediction and Macro-Level Systemic Risk Assessment

Author

Listed:
  • Gongao Zhang
  • Haijiang Zeng
  • Lu Jiang

Abstract

Financial institutions and regulators require systems that integrate heterogeneous data to assess risks from stock fluctuations to systemic vulnerabilities. Existing approaches often treat these tasks in isolation, failing to capture cross-scale dependencies. We propose Uni-FinLLM, a unified multimodal large language model that uses a shared Transformer backbone and modular task heads to jointly process financial text, numerical time series, fundamentals, and visual data. Through cross-modal attention and multi-task optimization, it learns a coherent representation for micro-, meso-, and macro-level predictions. Evaluated on stock forecasting, credit-risk assessment, and systemic-risk detection, Uni-FinLLM significantly outperforms baselines. It raises stock directional accuracy to 67.4% (from 61.7%), credit-risk accuracy to 84.1% (from 79.6%), and macro early-warning accuracy to 82.3%. Results validate that a unified multimodal LLM can jointly model asset behavior and systemic vulnerabilities, offering a scalable decision-support engine for finance.

Suggested Citation

  • Gongao Zhang & Haijiang Zeng & Lu Jiang, 2026. "Uni-FinLLM: A Unified Multimodal Large Language Model with Modular Task Heads for Micro-Level Stock Prediction and Macro-Level Systemic Risk Assessment," Papers 2601.02677, arXiv.org.
  • Handle: RePEc:arx:papers:2601.02677
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2601.02677
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2601.02677. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.