IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2601.01471.html

Double Machine Learning of Continuous Treatment Effects with General Instrumental Variables

Author

Listed:
  • Shuyuan Chen
  • Peng Zhang
  • Yifan Cui

Abstract

Estimating causal effects of continuous treatments is a common problem in practice, for example, in studying dose-response functions. Classical analyses typically assume that all confounders are fully observed, whereas in real-world applications, unmeasured confounding often persists. In this article, we propose a novel framework for local identification of dose-response functions using instrumental variables, thereby mitigating bias induced by unobserved confounders. We introduce the concept of a uniform regular weighting function and consider covering the treatment space with a finite collection of open sets. On each of these sets, such a weighting function exists, allowing us to identify the dose-response function locally within the corresponding region. For estimation, we develop an augmented inverse probability weighting score for continuous treatments under a debiased machine learning framework with instrumental variables. We further establish the asymptotic properties when the dose-response function is estimated via kernel regression or empirical risk minimization. Finally, we conduct both simulation and empirical studies to assess the finite-sample performance of the proposed methods.

Suggested Citation

  • Shuyuan Chen & Peng Zhang & Yifan Cui, 2026. "Double Machine Learning of Continuous Treatment Effects with General Instrumental Variables," Papers 2601.01471, arXiv.org.
  • Handle: RePEc:arx:papers:2601.01471
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2601.01471
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2601.01471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.