Author
Listed:
- Alejandro Rodriguez Dominguez
Abstract
We introduce an operator-theoretic framework for causal analysis in multivariate time series based on order-constrained spectral non-invariance. Directional influence is defined as sensitivity of second-order dependence operators to admissible, order-preserving temporal deformations of a designated source component, yielding an intrinsically multivariate causal notion summarized through orthogonally invariant spectral functionals. Under linear Gaussian assumptions, the criterion coincides with linear Granger causality, while beyond this regime it captures collective and nonlinear directional dependence not reflected in pairwise predictability. We establish existence, uniform consistency, and valid inference for the resulting non-smooth supremum--infimum statistics using shift-based randomization that exploits order-induced group invariance, yielding finite-sample exactness under exact invariance and asymptotic validity under weak dependence without parametric assumptions. Simulations demonstrate correct size and strong power against distributed and bulk-dominated alternatives, including nonlinear dependence missed by linear Granger tests with appropriate feature embeddings. An empirical application to a high-dimensional panel of daily financial return series spanning major asset classes illustrates system-level causal monitoring in practice. Directional organization is episodic and stress-dependent, causal propagation strengthens while remaining multi-channel, dominant causal hubs reallocate rapidly, and statistically robust transmission channels are sparse and horizon-heterogeneous even when aggregate lead--lag asymmetry is weak. The framework provides a scalable and interpretable complement to correlation-, factor-, and pairwise Granger-style analyses for complex systems.
Suggested Citation
Alejandro Rodriguez Dominguez, 2026.
"Order-Constrained Spectral Causality in Multivariate Time Series,"
Papers
2601.01216, arXiv.org.
Handle:
RePEc:arx:papers:2601.01216
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2601.01216. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.