IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2601.00776.html

TWICE: Tree-based Wage Inference with Clustering and Estimation

Author

Listed:
  • Aslan Bakirov
  • Francesco Del Prato
  • Paolo Zacchia

Abstract

How much do worker skills, firm pay policies, and their interaction contribute to wage inequality? Standard approaches rely on latent fixed effects identified through worker mobility, but sparse networks inflate variance estimates, additivity assumptions rule out complementarities, and the resulting decompositions lack interpretability. We propose TWICE (Tree-based Wage Inference with Clustering and Estimation), a framework that models the conditional wage function directly from observables using gradient-boosted trees, replacing latent effects with interpretable, observable-anchored partitions. This trades off the ability to capture idiosyncratic unobservables for robustness to sampling noise and out-of-sample portability. Applied to Portuguese administrative data, TWICE outperforms linear benchmarks out of sample and reveals that sorting and non-additive interactions explain substantially more wage dispersion than implied by standard AKM estimates.

Suggested Citation

  • Aslan Bakirov & Francesco Del Prato & Paolo Zacchia, 2026. "TWICE: Tree-based Wage Inference with Clustering and Estimation," Papers 2601.00776, arXiv.org.
  • Handle: RePEc:arx:papers:2601.00776
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2601.00776
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2601.00776. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.