IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2601.00395.html

Core-Periphery Dynamics in Market-Conditioned Financial Networks: A Conditional P-Threshold Mutual Information Approach

Author

Listed:
  • Kundan Mukhia
  • Imran Ansari
  • S R Luwang
  • Md Nurujjaman

Abstract

This study investigates how financial market structure reorganizes during the COVID-19 crash using a conditional p-threshold mutual information (MI) based Minimum Spanning Tree (MST) framework. We analyze nonlinear dependencies among the largest stocks from four diverse QUAD countries: the US, Japan, Australia, and India. Crashes are identified using the Hellinger distance and Hilbert spectrum; a crash occurs when HD = mu\_H + 2*sigma\_H, segmenting data into pre-crash, crash, and post-crash periods. Conditional p-threshold MI filters out common market effects and applies permutation-based significance testing. Resulting validated dependencies are used to construct MST networks for comparison across periods. Networks become more integrated during the crash, with shorter path lengths, higher centrality, and lower algebraic connectivity, indicating fragility. Core-periphery structure declines, with increased periphery vulnerability, and disassortative mixing facilitates shock transmission. Post-crash networks show only partial recovery. Aftershock analysis using the Gutenberg-Richter law indicates higher relative frequency of large volatility events following the crash. Results are consistent across all markets, highlighting the conditional p-threshold MI framework for capturing nonlinear interdependencies and systemic vulnerability.

Suggested Citation

  • Kundan Mukhia & Imran Ansari & S R Luwang & Md Nurujjaman, 2026. "Core-Periphery Dynamics in Market-Conditioned Financial Networks: A Conditional P-Threshold Mutual Information Approach," Papers 2601.00395, arXiv.org.
  • Handle: RePEc:arx:papers:2601.00395
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2601.00395
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2601.00395. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.