IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2601.00009.html

Full grid solution for multi-asset options pricing with tensor networks

Author

Listed:
  • Lucas Arenstein
  • Michael Kastoryano

Abstract

Pricing multi-asset options via the Black-Scholes PDE is limited by the curse of dimensionality: classical full-grid solvers scale exponentially in the number of underlyings and are effectively restricted to three assets. Practitioners typically rely on Monte Carlo methods for computing complex instrument involving multiple correlated underlyings. We show that quantized tensor trains (QTT) turn the d-asset Black-Scholes PDE into a tractable high-dimensional problem on a personal computer. We construct QTT representations of the operator, payoffs, and boundary conditions with ranks that scale polynomially in d and polylogarithmically in the grid size, and build two solvers: a time-stepping algorithm for European and American options and a space-time algorithm for European options. We compute full-grid prices and Greeks for correlated basket and max-min options in three to five dimensions with high accuracy. The methods introduced can comfortably be pushed to full-grid solutions on 10-15 underlyings, with further algorithmic optimization and more compute power.

Suggested Citation

  • Lucas Arenstein & Michael Kastoryano, 2025. "Full grid solution for multi-asset options pricing with tensor networks," Papers 2601.00009, arXiv.org.
  • Handle: RePEc:arx:papers:2601.00009
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2601.00009
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2601.00009. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.