Author
Listed:
- Jiafeng Chen
- Jonathan Roth
- Jann Spiess
Abstract
We consider the extent to which we can learn from a completely randomized experiment whether all individuals have treatment effects that are weakly of the same sign, a condition we call monotonicity. From a classical sampling perspective, it is well-known that monotonicity is not falsifiable. By contrast, we show from the design-based perspective -- in which the units in the population are fixed and only treatment assignment is stochastic -- that the distribution of treatment effects in the finite population (and hence whether monotonicity holds) is formally identified. We argue, however, that the usual definition of identification is unnatural in the design-based setting because it imagines knowing the distribution of outcomes over different treatment assignments for the same units. We thus evaluate the informativeness of the data by the extent to which it enables frequentist testing and Bayesian updating. We show that frequentist tests can have nontrivial power against some alternatives, but power is generically limited. Likewise, we show that there exist (non-degenerate) Bayesian priors that never update about whether monotonicity holds. We conclude that, despite the formal identification result, the ability to learn about monotonicity from data in practice is severely limited.
Suggested Citation
Jiafeng Chen & Jonathan Roth & Jann Spiess, 2025.
"Testing Monotonicity in a Finite Population,"
Papers
2512.25032, arXiv.org, revised Jan 2026.
Handle:
RePEc:arx:papers:2512.25032
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2512.25032. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.