IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2512.25025.html

Modewise Additive Factor Model for Matrix Time Series

Author

Listed:
  • Elynn Chen
  • Yuefeng Han
  • Jiayu Li
  • Ke Xu

Abstract

We introduce a Modewise Additive Factor Model (MAFM) for matrix-valued time series that captures row-specific and column-specific latent effects through an additive structure, offering greater flexibility than multiplicative frameworks such as Tucker and CP factor models. In MAFM, each observation decomposes into a row-factor component, a column-factor component, and noise, allowing distinct sources of variation along different modes to be modeled separately. We develop a computationally efficient two-stage estimation procedure: Modewise Inner-product Eigendecomposition (MINE) for initialization, followed by Complement-Projected Alternating Subspace Estimation (COMPAS) for iterative refinement. The key methodological innovation is that orthogonal complement projections completely eliminate cross-modal interference when estimating each loading space. We establish convergence rates for the estimated factor loading matrices under proper conditions. We further derive asymptotic distributions for the loading matrix estimators and develop consistent covariance estimators, yielding a data-driven inference framework that enables confidence interval construction and hypothesis testing. As a technical contribution of independent interest, we establish matrix Bernstein inequalities for quadratic forms of dependent matrix time series. Numerical experiments on synthetic and real data demonstrate the advantages of the proposed method over existing approaches.

Suggested Citation

  • Elynn Chen & Yuefeng Han & Jiayu Li & Ke Xu, 2025. "Modewise Additive Factor Model for Matrix Time Series," Papers 2512.25025, arXiv.org.
  • Handle: RePEc:arx:papers:2512.25025
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2512.25025
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2512.25025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.