IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2512.23596.html

The Nonstationarity-Complexity Tradeoff in Return Prediction

Author

Listed:
  • Agostino Capponi
  • Chengpiao Huang
  • J. Antonio Sidaoui
  • Kaizheng Wang
  • Jiacheng Zou

Abstract

We investigate machine learning models for stock return prediction in non-stationary environments, revealing a fundamental nonstationarity-complexity tradeoff: complex models reduce misspecification error but require longer training windows that introduce stronger non-stationarity. We resolve this tension with a novel model selection method that jointly optimizes model class and training window size using a tournament procedure that adaptively evaluates candidates on non-stationary validation data. Our theoretical analysis demonstrates that this approach balances misspecification error, estimation variance, and non-stationarity, performing close to the best model in hindsight. Applying our method to 17 industry portfolio returns, we consistently outperform standard rolling-window benchmarks, improving out-of-sample $R^2$ by 14-23% on average. During NBER-designated recessions, improvements are substantial: our method achieves positive $R^2$ during the Gulf War recession while benchmarks are negative, and improves $R^2$ in absolute terms by at least 80bps during the 2001 recession as well as superior performance during the 2008 Financial Crisis. Economically, a trading strategy based on our selected model generates 31% higher cumulative returns averaged across the industries.

Suggested Citation

  • Agostino Capponi & Chengpiao Huang & J. Antonio Sidaoui & Kaizheng Wang & Jiacheng Zou, 2025. "The Nonstationarity-Complexity Tradeoff in Return Prediction," Papers 2512.23596, arXiv.org.
  • Handle: RePEc:arx:papers:2512.23596
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2512.23596
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2512.23596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.