IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2512.23515.html

Alpha-R1: Alpha Screening with LLM Reasoning via Reinforcement Learning

Author

Listed:
  • Zuoyou Jiang
  • Li Zhao
  • Rui Sun
  • Ruohan Sun
  • Zhongjian Li
  • Jing Li
  • Daxin Jiang
  • Zuo Bai
  • Cheng Hua

Abstract

Signal decay and regime shifts pose recurring challenges for data-driven investment strategies in non-stationary markets. Conventional time-series and machine learning approaches, which rely primarily on historical correlations, often struggle to generalize when the economic environment changes. While large language models (LLMs) offer strong capabilities for processing unstructured information, their potential to support quantitative factor screening through explicit economic reasoning remains underexplored. Existing factor-based methods typically reduce alphas to numerical time series, overlooking the semantic rationale that determines when a factor is economically relevant. We propose Alpha-R1, an 8B-parameter reasoning model trained via reinforcement learning for context-aware alpha screening. Alpha-R1 reasons over factor logic and real-time news to evaluate alpha relevance under changing market conditions, selectively activating or deactivating factors based on contextual consistency. Empirical results across multiple asset pools show that Alpha-R1 consistently outperforms benchmark strategies and exhibits improved robustness to alpha decay. The full implementation and resources are available at https://github.com/FinStep-AI/Alpha-R1.

Suggested Citation

  • Zuoyou Jiang & Li Zhao & Rui Sun & Ruohan Sun & Zhongjian Li & Jing Li & Daxin Jiang & Zuo Bai & Cheng Hua, 2025. "Alpha-R1: Alpha Screening with LLM Reasoning via Reinforcement Learning," Papers 2512.23515, arXiv.org.
  • Handle: RePEc:arx:papers:2512.23515
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2512.23515
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2512.23515. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.