IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2512.23021.html

Squeezed Covariance Matrix Estimation: Analytic Eigenvalue Control

Author

Listed:
  • Layla Abu Khalaf
  • William Smyth

Abstract

We revisit Gerber's Informational Quality (IQ) framework, a data-driven approach for constructing correlation matrices from co-movement evidence, and address two obstacles that limit its use in portfolio optimization: guaranteeing positive semidefinite ness (PSD) and controlling spectral conditioning. We introduce a squeezing identity that represents IQ estimators as a convex-like combination of structured channel matrices, and propose an atomic-IQ parameterization in which each channel-class matrix is built from PSD atoms with a single class-level normalization. This yields constructive PSD guarantees over an explicit feasibility region, avoiding reliance on ex-post projection. To regulate conditioning, we develop an analytic eigen floor that targets either a minimum eigenvalue or a desired condition number and, when necessary, repairs PSD violations in closed form while remaining compatible with the squeezing identity. In long-only tangency back tests with transaction costs, atomic-IQ improves out-of-sample Sharpe ratios and delivers a more stable risk profile relative to a broad set of standard covariance estimators.

Suggested Citation

  • Layla Abu Khalaf & William Smyth, 2025. "Squeezed Covariance Matrix Estimation: Analytic Eigenvalue Control," Papers 2512.23021, arXiv.org.
  • Handle: RePEc:arx:papers:2512.23021
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2512.23021
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2512.23021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.