IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2512.22271.html
   My bibliography  Save this paper

Choice Modeling and Pricing for Scheduled Services

Author

Listed:
  • Adam N. Elmachtoub
  • Kumar Goutam
  • Roger Lederman

Abstract

We describe a novel framework for discrete choice modeling and price optimization for settings where scheduled service options (often hierarchical) are offered to customers, which is applicable across many businesses including some within Amazon. In such business settings, the customers would see multiple options, often substitutable, with their features and their prices. These options typically vary in the start and/or end time of the service requested, such as the date of service or a service time window. The costs and demand can vary widely across these different options, resulting in the need for different prices. We propose a system which allows for segmenting the marketplace (as defined by the particular business) using decision trees, while using parametric discrete choice models within each market segment to accurately estimate conversion behavior. Using parametric discrete choice models allows us to capture important behavioral aspects like reference price effects which naturally occur in scheduled service applications. In addition, we provide natural and fast heuristics to do price optimization. For one such Amazon business where we conducted a live A/B experiment, this new framework outperformed the existing pricing system in every key metric, increasing our target performance metric by 19%, while providing a robust platform to support future new services of the business. The model framework has now been in full production for this business since Q4 2023.

Suggested Citation

  • Adam N. Elmachtoub & Kumar Goutam & Roger Lederman, 2025. "Choice Modeling and Pricing for Scheduled Services," Papers 2512.22271, arXiv.org.
  • Handle: RePEc:arx:papers:2512.22271
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2512.22271
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2512.22271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.