IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2512.21539.html

Chaos, Ito-Stratonovich dilemma, and topological supersymmetry

Author

Listed:
  • Igor V. Ovchinnikov

Abstract

It was recently established that the formalism of the generalized transfer operator (GTO) of dynamical systems (DS) theory, applied to stochastic differential equations (SDEs) of arbitrary form, belongs to the family of cohomological topological field theories (TFT) -- a class of models at the intersection of algebraic topology and high-energy physics. This interdisciplinary approach, which can be called the supersymmetric theory of stochastic dynamics (STS), can be seen as an algebraic dual to the traditional set-theoretic framework of the DS theory, with its algebraic structure enabling the extension of some DS theory concepts to stochastic dynamics. Moreover, it reveals the presence of a topological supersymmetry (TS) in the GTOs of all SDEs. It also shows that among the various definitions of chaos, positive "pressure", defined as the logarithm of the GTO spectral radius, stands out as particularly meaningful from a physical perspective, as it corresponds to the spontaneous breakdown of TS on the TFT side. Via the Goldstone theorem, this definition has a potential to provide the long-sought explanation for the experimental signature of chaotic dynamics known as 1/f noise. Additionally, STS clarifies that among the various existing interpretations of SDEs, only the Stratonovich interpretation yields evolution operators that match the corresponding GTOs and, consequently, have a clear-cut mathematical meaning. Here, we discuss these and other aspects of STS from both the DS theory and TFT perspectives, focusing on links between these two fields and providing mathematical concepts with physical interpretations that may be useful in some contexts.

Suggested Citation

  • Igor V. Ovchinnikov, 2025. "Chaos, Ito-Stratonovich dilemma, and topological supersymmetry," Papers 2512.21539, arXiv.org.
  • Handle: RePEc:arx:papers:2512.21539
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2512.21539
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2512.21539. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.