IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2512.20523.html

ScoreMatchingRiesz: Auto-DML with Infinitesimal Classification

Author

Listed:
  • Masahiro Kato

Abstract

This study proposes Riesz representer estimation methods based on score matching. The Riesz representer is a key component in debiased machine learning for constructing $\sqrt{n}$-consistent and efficient estimators in causal inference and structural parameter estimation. To estimate the Riesz representer, direct approaches have garnered attention, such as Riesz regression and the covariate balancing propensity score. These approaches can also be interpreted as variants of direct density ratio estimation (DRE) in several applications such as average treatment effect estimation. In DRE, it is well known that flexible models can easily overfit the observed data due to the estimand and the form of the loss function. To address this issue, recent work has proposed modeling the density ratio as a product of multiple intermediate density ratios and estimating it using score-matching techniques, which are often used in the diffusion model literature. We extend score-matching-based DRE methods to Riesz representer estimation. Our proposed method not only mitigates overfitting but also provides insights for causal inference by bridging marginal effects and average policy effects through time score functions.

Suggested Citation

  • Masahiro Kato, 2025. "ScoreMatchingRiesz: Auto-DML with Infinitesimal Classification," Papers 2512.20523, arXiv.org.
  • Handle: RePEc:arx:papers:2512.20523
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2512.20523
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2512.20523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.