IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2512.20216.html

Quantitative Financial Modeling for Sri Lankan Markets: Approach Combining NLP, Clustering and Time-Series Forecasting

Author

Listed:
  • Linuk Perera

Abstract

This research introduces a novel quantitative methodology tailored for quantitative finance applications, enabling banks, stockbrokers, and investors to predict economic regimes and market signals in emerging markets, specifically Sri Lankan stock indices (S&P SL20 and ASPI) by integrating Environmental, Social, and Governance (ESG) sentiment analysis with macroeconomic indicators and advanced time-series forecasting. Designed to leverage quantitative techniques for enhanced risk assessment, portfolio optimization, and trading strategies in volatile environments, the architecture employs FinBERT, a transformer-based NLP model, to extract sentiment from ESG texts, followed by unsupervised clustering (UMAP/HDBSCAN) to identify 5 latent ESG regimes, validated via PCA. These regimes are mapped to economic conditions using a dense neural network and gradient boosting classifier, achieving 84.04% training and 82.0% validation accuracy. Concurrently, time-series models (SRNN, MLP, LSTM, GRU) forecast daily closing prices, with GRU attaining an R-squared of 0.801 and LSTM delivering 52.78% directional accuracy on intraday data. A strong correlation between S&P SL20 and S&P 500, observed through moving average and volatility trend plots, further bolsters forecasting precision. A rule-based fusion logic merges ESG and time-series outputs for final market signals. By addressing literature gaps that overlook emerging markets and holistic integration, this quant-driven framework combines global correlations and local sentiment analysis to offer scalable, accurate tools for quantitative finance professionals navigating complex markets like Sri Lanka.

Suggested Citation

  • Linuk Perera, 2025. "Quantitative Financial Modeling for Sri Lankan Markets: Approach Combining NLP, Clustering and Time-Series Forecasting," Papers 2512.20216, arXiv.org.
  • Handle: RePEc:arx:papers:2512.20216
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2512.20216
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2512.20216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.