IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2512.19986.html

Covariance-Aware Simplex Projection for Cardinality-Constrained Portfolio Optimization

Author

Listed:
  • Nikolaos Iliopoulos

Abstract

Metaheuristic algorithms for cardinality-constrained portfolio optimization require repair operators to map infeasible candidates onto the feasible region. Standard Euclidean projection treats assets as independent and can ignore the covariance structure that governs portfolio risk, potentially producing less diversified portfolios. This paper introduces Covariance-Aware Simplex Projection (CASP), a two-stage repair operator that (i) selects a target number of assets using volatility-normalized scores and (ii) projects the candidate weights using a covariance-aware geometry aligned with tracking-error risk. This provides a portfolio-theoretic foundation for using a covariance-induced distance in repair operators. On S&P 500 data (2020-2024), CASP-Basic delivers materially lower portfolio variance than standard Euclidean repair without relying on return estimates, with improvements that are robust across assets and statistically significant. Ablation results indicate that volatility-normalized selection drives most of the variance reduction, while the covariance-aware projection provides an additional, consistent improvement. We further show that optional return-aware extensions can improve Sharpe ratios, and out-of-sample tests confirm that gains transfer to realized performance. CASP integrates as a drop-in replacement for Euclidean projection in metaheuristic portfolio optimizers.

Suggested Citation

  • Nikolaos Iliopoulos, 2025. "Covariance-Aware Simplex Projection for Cardinality-Constrained Portfolio Optimization," Papers 2512.19986, arXiv.org.
  • Handle: RePEc:arx:papers:2512.19986
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2512.19986
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2512.19986. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.