IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2512.19843.html

Numerical Analysis of Test Optimality

Author

Listed:
  • Philipp Ketz
  • Adam McCloskey
  • Jan Scherer

Abstract

In nonstandard testing environments, researchers often derive ad hoc tests with correct (asymptotic) size, but their optimality properties are typically unknown a priori and difficult to assess. This paper develops a numerical framework for determining whether an ad hoc test is effectively optimal - approximately maximizing a weighted average power criterion for some weights over the alternative and attaining a power envelope generated by a single weighted average power-maximizing test. Our approach uses nested optimization algorithms to approximate the weight function that makes an ad hoc test's weighted average power as close as possible to that of a true weighted average power-maximizing test, and we show the surprising result that the rejection probabilities corresponding to the latter form an approximate power envelope for the former. We provide convergence guarantees, discuss practical implementation and apply the method to the weak instrument-robust conditional likelihood ratio test and a recently-proposed test for when a nuisance parameter may be on or near its boundary.

Suggested Citation

  • Philipp Ketz & Adam McCloskey & Jan Scherer, 2025. "Numerical Analysis of Test Optimality," Papers 2512.19843, arXiv.org.
  • Handle: RePEc:arx:papers:2512.19843
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2512.19843
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2512.19843. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.