IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2512.19824.html

Limit Regret in Binary Treatment Choice with Misspecified Plug-In Predictors and Decision Thresholds

Author

Listed:
  • Jeff Dominitz
  • Charles F. Manski

Abstract

We study the population limit maximum regret (MR) of plug-in prediction when the decision problem is to choose between two treatments for the members of a population with observed covariates x. In this setting, the optimal treatment for persons with covariate value x is B if the conditional probability P(y = 1|x) of a binary outcome y exceeds an x-specific known threshold and is A otherwise. This structure is common in medical decision making, as well as non-medical contexts. Plug-in prediction uses data to estimate P(y|x) and acts as if the estimate is accurate. We are concerned that the model used to estimate P(y|x) may be misspecified, with true conditional probabilities being outside the model space. In practice, plug-in prediction has been performed with a wide variety of prediction models that commonly are misspecified. Further, applications often use a conventional x-invariant threshold, whereas optimal treatment choice uses x-specific thresholds. The main contribution of this paper is to shed new light on limit MR when plug-in prediction is performed with misspecified models. We use a combination of algebraic and computational analysis to study limit MR, demonstrating how it depends on the limit estimate and on the thresholds used to choose treatments. We recommend that a planner who wants to use plug-in prediction to achieve satisfactory MR should jointly choose a predictive model, estimation method, and x-specific thresholds to accomplish this objective.

Suggested Citation

  • Jeff Dominitz & Charles F. Manski, 2025. "Limit Regret in Binary Treatment Choice with Misspecified Plug-In Predictors and Decision Thresholds," Papers 2512.19824, arXiv.org.
  • Handle: RePEc:arx:papers:2512.19824
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2512.19824
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2512.19824. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.