IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2512.19589.html

srvar-toolkit: A Python Implementation of Shadow-Rate Vector Autoregressions with Stochastic Volatility

Author

Listed:
  • Charles Shaw

Abstract

We introduce srvar-toolkit, an open-source Python package for Bayesian vector autoregression with shadow-rate constraints and stochastic volatility. The toolkit implements the methodology of Grammatikopoulos (2025, Journal of Forecasting) for forecasting macroeconomic variables when interest rates hit the effective lower bound. We provide conjugate Normal-Inverse-Wishart priors with Minnesota-style shrinkage, latent shadow-rate data augmentation via Gibbs sampling, diagonal stochastic volatility using the Kim-Shephard-Chib mixture approximation, and stochastic search variable selection. Core dependencies are NumPy, SciPy, and Pandas, with optional extras for plotting and a configuration-driven command-line interface. We release the software under the MIT licence at https://github.com/shawcharles/srvar-toolkit.

Suggested Citation

  • Charles Shaw, 2025. "srvar-toolkit: A Python Implementation of Shadow-Rate Vector Autoregressions with Stochastic Volatility," Papers 2512.19589, arXiv.org.
  • Handle: RePEc:arx:papers:2512.19589
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2512.19589
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2512.19589. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.