Author
Listed:
- Yue Fang
- Geert Ridder
- Haitian Xie
Abstract
Recent literature on policy learning has primarily focused on regret bounds of the learned policy. We provide a new perspective by developing a unified semiparametric efficiency framework for policy learning, allowing for general treatments that are discrete, continuous, or mixed. We provide a characterization of the failure of pathwise differentiability for parameters arising from deterministic policies. We then establish efficiency bounds for pathwise differentiable parameters in randomized policies, both when the propensity score is known and when it must be estimated. Building on the convolution theorem, we introduce a notion of efficiency for the asymptotic distribution of welfare regret, showing that inefficient policy estimators not only inflate the variance of the asymptotic regret but also shift its mean upward. We derive the asymptotic theory of several common policy estimators, with a key contribution being a policy-learning analogue of the Hirano-Imbens-Ridder (HIR) phenomenon: the inverse propensity weighting estimator with an estimated propensity is efficient, whereas the same estimator using the true propensity is not. We illustrate the theoretical results with an empirically calibrated simulation study based on data from a job training program and an empirical application to a commitment savings program.
Suggested Citation
Yue Fang & Geert Ridder & Haitian Xie, 2025.
"Semiparametric Efficiency in Policy Learning with General Treatments,"
Papers
2512.19230, arXiv.org.
Handle:
RePEc:arx:papers:2512.19230
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2512.19230. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.