IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2512.18678.html

(Debiased) Inference for Fixed Effects Estimators with Three-Dimensional Panel and Network Data

Author

Listed:
  • Daniel Czarnowske
  • Amrei Stammann

Abstract

Inference for fixed effects estimators of linear and nonlinear panel models is often unreliable due to Nickell- and/or incidental parameter biases. This article develops new inferential theory for (non)linear fixed effects M-estimators with data featuring a three-dimensional panel structure, such as sender x receiver x time. Our theory accommodates bipartite, directed, and undirected network panel data, integrates distinct specifications for additively separable unobserved effects with different layers of variation, and allows for weakly exogenous regressors. Our analysis reveals that the asymptotic properties of fixed effects estimators with three-dimensional panel data can deviate substantially from those with two-dimensional panel data. While for some specifications the estimator turns out to be asymptotically unbiased, in other specifications, it suffers from a particularly severe inference problem, characterized by a degenerate asymptotic distribution and complex bias structures. We address this atypical inference problem, by deriving explicit expressions to debias the fixed effects estimators.

Suggested Citation

  • Daniel Czarnowske & Amrei Stammann, 2025. "(Debiased) Inference for Fixed Effects Estimators with Three-Dimensional Panel and Network Data," Papers 2512.18678, arXiv.org.
  • Handle: RePEc:arx:papers:2512.18678
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2512.18678
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2512.18678. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.