IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2512.17952.html

Will AI Trade? A Computational Inversion of the No-Trade Theorem

Author

Listed:
  • Hanyu Li
  • Xiaotie Deng

Abstract

Classic no-trade theorems attribute trade to heterogeneous beliefs. We re-examine this conclusion for AI agents, asking if trade can arise from computational limitations, under common beliefs. We model agents' bounded computational rationality within an unfolding game framework, where computational power determines the complexity of its strategy. Our central finding inverts the classic paradigm: a stable no-trade outcome (Nash equilibrium) is reached only when "almost rational" agents have slightly different computational power. Paradoxically, when agents possess identical power, they may fail to converge to equilibrium, resulting in persistent strategic adjustments that constitute a form of trade. This instability is exacerbated if agents can strategically under-utilize their computational resources, which eliminates any chance of equilibrium in Matching Pennies scenarios. Our results suggest that the inherent computational limitations of AI agents can lead to situations where equilibrium is not reached, creating a more lively and unpredictable trade environment than traditional models would predict.

Suggested Citation

  • Hanyu Li & Xiaotie Deng, 2025. "Will AI Trade? A Computational Inversion of the No-Trade Theorem," Papers 2512.17952, arXiv.org.
  • Handle: RePEc:arx:papers:2512.17952
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2512.17952
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2512.17952. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.