IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2512.17929.html

Reinforcement Learning for Monetary Policy Under Macroeconomic Uncertainty: Analyzing Tabular and Function Approximation Methods

Author

Listed:
  • Tony Wang
  • Kyle Feinstein
  • Sheryl Chen

Abstract

We study how a central bank should dynamically set short-term nominal interest rates to stabilize inflation and unemployment when macroeconomic relationships are uncertain and time-varying. We model monetary policy as a sequential decision-making problem where the central bank observes macroeconomic conditions quarterly and chooses interest rate adjustments. Using publicly accessible historical Federal Reserve Economic Data (FRED), we construct a linear-Gaussian transition model and implement a discrete-action Markov Decision Process with a quadratic loss reward function. We chose to compare nine different reinforcement learning style approaches against Taylor Rule and naive baselines, including tabular Q-learning variants, SARSA, Actor-Critic, Deep Q-Networks, Bayesian Q-learning with uncertainty quantification, and POMDP formulations with partial observability. Notably, despite its simplicity, standard tabular Q-learning achieved the best performance (-615.13 +- 309.58 mean return), outperforming both enhanced RL methods and traditional policy rules. Our results suggest that while sophisticated RL techniques show promise for monetary policy applications, simpler approaches may be more robust in this domain, highlighting important challenges in applying modern RL to macroeconomic policy.

Suggested Citation

  • Tony Wang & Kyle Feinstein & Sheryl Chen, 2025. "Reinforcement Learning for Monetary Policy Under Macroeconomic Uncertainty: Analyzing Tabular and Function Approximation Methods," Papers 2512.17929, arXiv.org, revised Jan 2026.
  • Handle: RePEc:arx:papers:2512.17929
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2512.17929
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2512.17929. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.