IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2512.16452.html

Smart Data Portfolios: A Quantitative Framework for Input Governance in AI

Author

Listed:
  • A. Talha Yalta
  • A. Yasemin Yalta

Abstract

Growing concerns about fairness, privacy, robustness, and transparency have made it a central expectation of AI governance that automated decisions be explainable by institutions and intelligible to affected parties. We introduce the Smart Data Portfolio (SDP) framework, which treats data categories as productive but risk-bearing assets, formalizing input governance as an information-risk trade-off. Within this framework, we define two portfolio-level quantities, Informational Return and Governance-Adjusted Risk, whose interaction characterizes data mixtures and generates a Governance-Efficient Frontier. Regulators shape this frontier through risk caps, admissible categories, and weight bands that translate fairness, privacy, robustness, and provenance requirements into measurable constraints on data allocation while preserving model flexibility. A telecommunications illustration shows how different AI services require distinct portfolios within a common governance structure. The framework offers a familiar portfolio logic as an input-level explanation layer suited to the large-scale deployment of AI systems.

Suggested Citation

  • A. Talha Yalta & A. Yasemin Yalta, 2025. "Smart Data Portfolios: A Quantitative Framework for Input Governance in AI," Papers 2512.16452, arXiv.org.
  • Handle: RePEc:arx:papers:2512.16452
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2512.16452
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2512.16452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.