IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2512.16411.html

Asymptotic and finite-sample distributions of one- and two-sample empirical relative entropy, with application to change-point detection

Author

Listed:
  • Matthieu Garcin
  • Louis Perot

Abstract

Relative entropy, as a divergence metric between two distributions, can be used for offline change-point detection and extends classical methods that mainly rely on moment-based discrepancies. To build a statistical test suitable for this context, we study the distribution of empirical relative entropy and derive several types of approximations: concentration inequalities for finite samples, asymptotic distributions, and Berry-Esseen bounds in a pre-asymptotic regime. For the latter, we introduce a new approach to obtain Berry-Esseen inequalities for nonlinear functions of sum statistics under some convexity assumptions. Our theoretical contributions cover both one- and two-sample empirical relative entropies. We then detail a change-point detection procedure built on relative entropy and compare it, through extensive simulations, with classical methods based on moments or on information criteria. Finally, we illustrate its practical relevance on two real datasets involving temperature series and volatility of stock indices.

Suggested Citation

  • Matthieu Garcin & Louis Perot, 2025. "Asymptotic and finite-sample distributions of one- and two-sample empirical relative entropy, with application to change-point detection," Papers 2512.16411, arXiv.org.
  • Handle: RePEc:arx:papers:2512.16411
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2512.16411
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2512.16411. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.