IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2512.16115.html

An Efficient Machine Learning Framework for Option Pricing via Fourier Transform

Author

Listed:
  • Liying Zhang
  • Ying Gao

Abstract

The increasing need for rapid recalibration of option pricing models in dynamic markets places stringent computational demands on data generation and valuation algorithms. In this work, we propose a hybrid algorithmic framework that integrates the smooth offset algorithm (SOA) with supervised machine learning models for the fast pricing of multiple path-independent options under exponential L\'evy dynamics. Building upon the SOA-generated dataset, we train neural networks, random forests, and gradient boosted decision trees to construct surrogate pricing operators. Extensive numerical experiments demonstrate that, once trained, these surrogates achieve order-of-magnitude acceleration over direct SOA evaluation. Importantly, the proposed framework overcomes key numerical limitations inherent to fast Fourier transform-based methods, including the consistency of input data and the instability in deep out-of-the-money option pricing.

Suggested Citation

  • Liying Zhang & Ying Gao, 2025. "An Efficient Machine Learning Framework for Option Pricing via Fourier Transform," Papers 2512.16115, arXiv.org, revised Dec 2025.
  • Handle: RePEc:arx:papers:2512.16115
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2512.16115
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2512.16115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.